Lecture 10 - Oct 6

<u>Graphs</u>

Forest vs. Tree vs. Spanning Tree Graph Traversal: Depth-First Search (DFS) DFS on a Tree vs. Pre-Order Traversal

Simple cycle:

A closed path that starts and ends at the same vertex and does not repeat any vertex or edge except for the starting/ending vertex.

Example: A-B-

Non-simple cycle:

A closed path that starts and ends at the same vertex but

> undirected Graph: Forests and Trees - no cycle (acyclec) Any two vertices are americal via * at most one path. What of >2 edges commercing two vertices. * Special case: if u and v are competed by 0 = edge ~> the graph is not A forest may or may not be connected.

Summary of Terms subgraph spanning subgraph forest tree spanning tree Undwerfed acyclic? Connected

Graph: Exercises

	Graph Traversal: Depth-First Search (DFS) display edges.
_	A Depth-First Search (DFS) of graph G = (V, E),
ď	 starting from some vertex v ∈ V, proceeds along a path from v. The path is constructed by following an incident edge.
	The path is extended as far as possible until all incident edges lead to vertices that have already been visited.
	 Once the path originated from v cannot be extended further,
	backtrack to the latest vertex whose incident edges lead to some unvisited vertices.
	Assumption: iterate through neighbours alphabetically.
	Q. When a graph is a tree,
	what kind of tree traversal does it correspond to?
	pre-order (parent first, children next).
	Q. What data structure should be used to say all these
	keep track of the visited nodes? notification with the visited nodes?
	Stack. (LIFO).

A

Depth-First Search (DFS): Marking Vertices & Edges

Before the **DFS** starts:

- All vertices are unvisited.
- All edges are unexplored/unmarked.

Over the course of a **DFS**, we **mark** vertices and edges:

- A vertex *v* is marked *visited* when it is **first** encountered.
- Then, we iterate through each of v's **incident edges**, say e:
 - If edge e is already marked, then skip it.
 - Otherwise, mark edge e as:
 - A *discovery* edge if it leads to an *unvisited* vertex

